NMR spectra of some simple spin systems studied by two-dimensional Fourier transformation of spin echoes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In solids spinning at the magic angle, the indirect detection of single-quantum (SQ) and double-quantum (DQ) N-14 spectra (l = 1) via spy nuclei S = 1/2 such as protons can be achieved in the manner of heteronuclear single- or multiple-quantum correlation ...
The spin echo is the single most important building block in modern NMR spectroscopy, but echo modulation by scalar couplings J can severely complicate its use. We show for the first time that a general but unacknowledged solution to such complications alr ...
The transverse relaxation rates R (2) = 1/T (2) of protons can be determined by spin-echo sequences with multiple refocusing pulses using moderate radio-frequency field strengths and properly chosen inter-pulse delays so as to suppress echo modulations due ...
Nuclear magnetic resonance (NMR) spectroscopy can be applied in vivo to measure static or dynamic biochemical information, e.g., concentrations of metabolites and metabolic fluxes, using various nuclei such as 1H, 13C, 31P and 15N. The work of this thesis ...
Multiple refocusing cycles can be used to extract transverse relaxation rates, R2, while homonuclear scalar couplings do not interfere. In this work, I have demonstrated the usefulness of a hybrid sequence, which is a compromise between single and multiple ...
Nuclear magnetic relaxation in the presence of paramagnetic centres has gained increasing interest in recent years partly due to its importance for contrast agents in magnetic resonance imaging. Rational design of new more efficient agents is possible as a ...
Long-lived coherences (LLCs) in homonuclear pairs of chemically inequivalent spins can be excited and sustained during protracted radio frequency irradiation periods that alternate with brief windows for signal observation. Fourier transformation of the su ...
Major breakthroughs have recently been reported that can help overcome two inherent drawbacks of NMR: the lack of sensitivity and the limited memory of longitudinal magnetization. Dynamic nuclear polarization (DNP) couples nuclear spins to the large reserv ...
Slow dynamic processes, such as biomolecular folding/unfolding, macromolecular diffusion, etc., can be conveniently monitored by solution-state two-dimensional (2D) NMR spectroscopy, provided the inverse of their rate constants does not exceed the nuclear ...
Developments towards an understanding of the nature of conductance at the interface between two different metallic layers – ferromagnetic and non magnetic – as well as the discovery of giant magnetoresistance have stirred attention from both the scientific ...