Protein familyA protein family is a group of evolutionarily related proteins. In many cases, a protein family has a corresponding gene family, in which each gene encodes a corresponding protein with a 1:1 relationship. The term "protein family" should not be confused with family as it is used in taxonomy. Proteins in a family descend from a common ancestor and typically have similar three-dimensional structures, functions, and significant sequence similarity.
Nuclear familyA nuclear family, elementary family, atomic family, cereal-packet family or conjugal family is a family group consisting of parents and their children (one or more), typically living in one home residence. It is in contrast to a single-parent family, the larger extended family, or a family with more than two parents. Nuclear families typically center on a heterosexual married couple which may have any number of children. There are differences in definition among observers.
Protective relayIn electrical engineering, a protective relay is a relay device designed to trip a circuit breaker when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detection of abnormal operating conditions such as over-current, overvoltage, reverse power flow, over-frequency, and under-frequency. Microprocessor-based solid-state digital protection relays now emulate the original devices, as well as providing types of protection and supervision impractical with electromechanical relays.
FamilyFamily (from familia) is a group of people related either by consanguinity (by recognized birth) or affinity (by marriage or other relationship). It forms the basis for social order. The purpose of the family is to maintain the well-being of its members and of society. Ideally, families offer predictability, structure, and safety as members mature and learn to participate in the community. Historically, most human societies use family as the primary locus of attachment, nurturance, and socialization.
Muon-catalyzed fusionMuon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions. Muons are unstable subatomic particles which are similar to electrons but 207 times more massive. If a muon replaces one of the electrons in a hydrogen molecule, the nuclei are consequently drawn 196 times closer than in a normal molecule, due to the reduced mass being 196 times the mass of an electron.