Coherent fluorescence resonance energy transfer: Construction of nonlocal multiparticle entangled states and quantum computing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
An enduring challenge in constructing mechanical-oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom and maintain good mechanical isolation from the environment, that is, low quantum decoherence, consi ...
Tracking electron motion in molecules is the key to understanding and controlling chemical transformations. Contemporary techniques in attosecond science are able to generate and trace the consequences of this motion in real time, but not in real space. Sc ...
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
Lanthanide atoms on surfaces are an exceptional platform for atomic-scale magnetic information storage. However, their potential as qubits remains unexplored due to the limited number of experimental setups that can coherently drive the spins of single ada ...
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the n ...
Quantum computing is one of the great scientific challenges of the 21st century. Small-scalesystems today promise to surpass classical computers in the coming years and to enable thesolution of classically intractable computational tasks in the fields of q ...
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...
It's been a little more than 40 years since researchers first suggested exploiting quantum physics to build more powerful computers. During this time, we have seen the development of many quantum algorithms and significant technological advances to make th ...
As quantum processors grow in complexity, attention is moving to the scaling prospects of the entire quantum computing system, including the classical support hardware. Recent results in high-fidelity control of individual spins in silicon, combined with d ...