Ultrafast structural dynamics in electronically excited solid neon. II. Molecular-dynamics simulations of the electronic bubble formation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the Dvati-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Va ...
The structural changes due to formation of electronic bubbles in solid D2 are studied by fluorescence, fluorescence-excitation, and fluorescence-depletion spectroscopy of the lowest Rydberg state, A 2S+(3ss), of the NO impurity. The A X band is strongly bl ...
Structural dynamics in solid hydrogens is impulsively triggered by femtosecond excitation of the lowest Rydberg state of the NO impurity. The resulting charge redistribution induces a local radial deformation of the medium ("bubble" formation) around the ...
Structural dynamics in semi-quantum and quantum solids (Ne, H2 and D2) is reported, and compared to results in classical solids such as Ar. The structural dynamics is driven by excitation of the lowest Rydberg state of the NO impurity. The resulting charge ...
The dynamics of electron bubble formation upon excitation of the A(3ss) Rydberg orbital of NO in solid Ne was studied by femtosecond pump-probe spectroscopy. The authors observe an ultrafast expansion of the bubble, followed by a vibrational recurrence in ...
The authors present mol. dynamics simulations of the absorption spectra of the Hg2 mol. in solid Ne, Ar, and Xe. The simulations were performed using classical mol. dynamics (MD) and a diat.-in-mols. (DIM) treatment of the mixing of the different states of ...
Excitation of the A(3ss) Rydberg state of NO leads to an extensive rearrangement of the environment, which was studied by classical mol. dynamics simulations and normal mode anal., using pair potentials from the literature. The medium response is independe ...
The dynamics of electron bubble formation upon excitation of the A(3ss) Rydberg orbital of NO in solid Ne was studied by conventional spectroscopy and fs pump-probe spectroscopy. The fs pump pulse initiates the formation of a bubble by the expansion of the ...
The authors present a hybrid Car-Parrinello quantum mech./mol. mech. (QM/MM) approach that is capable of treating the dynamics of mol. systems in electronically excited states in complex environments. The potential energy surface in the excited state is de ...
We report on structural dynamics in simple van der Waals solids (Ar, Ne, and H2), as driven by the excitation of an impurity (NO) Rydberg state. The resulting charge redistribution induces a local radial deformation of the medium ("bubble" formation). Th ...