Labeling of fusion proteins with synthetic fluorophores in live cells
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A novel fluorescence lifetime imaging microscopy (FLIM) working with deep UV 240-280 nm wavelength excitations has been developed. UV-FLIM is used for measurement of defect-related fluorescence and its changes upon annealing from femtosecond laser-induced ...
The SNAP-tag labeling technology provides a simple, robust, and versatile approach to the imaging of fusion proteins for a wide range of experimental applications. Owing to the specific and covalent nature of the labeling reaction, SNAP-tag is well suited ...
We present a fluorescence activation-coupled protein labeling (FAPL) method, which employs small-molecular probes that exhibit almost no basal fluorescence but acquire strong fluorescence upon covalent binding to tag-proteins. This method enables real-time ...
Planar mutilayers sustaining either TE or TM polarized Bloch Surface Waves (BSWs) offer new opportunities for management of light at the nanoscale. We will discuss how BSWs can be exploited in guiding and confining light on nanometric relieves, enhancing f ...
Background: Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, ...
Triplet, photo-oxidized and other photoinduced, long-lived states of fluorophores are sensitive to the local environment and thus attractive for microenvironmental imaging purposes. In this work, we introduce an approach where these states are monitored in ...
Fluorescence resonance energy transfer (FRET) efficiency measurements based on acceptor photobleaching of yellow fluorescent protein (YFP) are affected by the fact that bleaching of YFP produces a fluorescent species that is detectable in cyan fluorescent ...
The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion protein ...
Single-molecule Forster resonance energy transfer (FRET) and photoinduced electron transfer (PET) have developed into versatile and complementary methods for probing distances and dynamics in biomolecules. Here we show that the two methods can be combined ...
Over the last decade, several protein tags have been developed for the specific and covalent labeling of fusion proteins with small organic probes. Among them, SNAP-tag has been used in many applications such as live cell imaging, protein microarrays and t ...