The adoption of crystalline silicon (c-Si) PV modules based on glass-glass (G-G) structures is gaining momentum because of the possibility to manufacture bifacial panels, collecting light from the rear side. Despite not being an optimal material, Ethylene Vinyl Acetate (EVA) has become the dominant encapsulant in the PV industry. In fact, upon exposure to UV at high temperatures in the presence of moisture, EVA generates acetic acid (HAc), leading to the corrosion of the metallic interconnects. This problematic may be even more pronounced in a non-permeable G-G structure, compared to a conventional glass-backsheet (G-BS) design, in which HAc can be partially degassed out through the breathable BS. Nevertheless, some industries would like to continue using EVA in the manufacturing of G-G modules, because of the lower cost, the much longer track record and easier processability of EVA compared to newer alternatives, such as polyolefns (POs). In this work, we try to answer the question whether it is possible to use EVA in the manufacturing of G-G modules. The experimental chapters focus primarily on study the long-term reliability, in particular:
Christophe Ballif, Aïcha Hessler-Wyser, Antonin Faes, Jacques Levrat, Umang Bhupatrai Desai, Gianluca Cattaneo, Fahradin Mujovi, Matthieu Despeisse
Christophe Ballif, Alessandro Francesco Aldo Virtuani, Luca Gnocchi, Olatz Arriaga Arruti