Publication

Visual Speech Recognition using Active Shape Models and Hidden Markov Models

1996
Conference paper
Abstract

This paper describes a novel approach for visual speech recognition. The shape of the mouth is modelled by an Active Shape Model which is derived from the statistics of a training set and used to locate, track and parameterise the speaker�s lip movements. The extracted parameters representing the lip shape are modelled as continuous probability distributions and their temporal dependencies are modelled by Hidden Markov Models. We present recognition tests performed on a database of a broad variety of speakers and illumination conditions. The system achieved an accuracy of 85.42 % for a speaker independent recognition task of the first four digits using lip shape information only.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.