Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Documents are usually represented in the bag-of-word space. However, this representation does not take into account the possible relations between words. We propose here a graphical model for representing documents: the Theme Topic Mixture Model (TTMM). Th ...
Documents are usually represented in the bag-of-word space. However, this representation does not take into account the possible relations between words. We propose here a graphical model for representing documents: the Theme Topic Mixture Model (TTMM). Th ...
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of m ...
This work shows Information Retrieval experiments performed over handwritten documents produced by a single writer. The same retrieval task has been performed over both manual (no errors) and automatic (Word Error Rate around 45%) transcriptions of 200 han ...
In this article we present a novel approach of integrating textual and visual descriptors of images in a unified retrieval structure. The methodology, inspired from text retrieval and information filtering is based on Latent Semantic Indexing (LS1). ...
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of m ...
This paper describes a new latent semantic indexing (LSI) method for spoken audio documents. The framework is indexing broadcast news from radio and TV as a combination of large vocabulary continuous speech recognition (LVCSR), natural language processing ...
A method is presented to provide a useful searchable index for spoken audio documents. The task differs from the traditional (text) document indexing, because large audio databases are decoded by automatic speech recognition and decoding errors occur frequ ...
Spoken Document Retrieval (SDR) consists in retrieving segments of a speech database that are relevant to a query. The state-of-the-art approach to the SDR problem consists in transcribing the speech data into digital text before applying common Informatio ...
This paper presents an indexing system for spoken audio documents. The framework is indexing and retrieval of broadcast news. The proposed indexing system applies latent semantic analysis (LSA) and self-organizing maps (SOM) to map the documents into a sem ...