Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Documents are usually represented in the bag-of-word space. However, this representation does not take into account the possible relations between words. We propose here a graphical model for representing documents: the Theme Topic Mixture Model (TTMM). Th ...
Documents are usually represented in the bag-of-word space. However, this representation does not take into account the possible relations between words. We propose here a graphical model for representing documents: the Theme Topic Mixture Model (TTMM). Th ...
This work shows Information Retrieval experiments performed over handwritten documents produced by a single writer. The same retrieval task has been performed over both manual (no errors) and automatic (Word Error Rate around 45%) transcriptions of 200 han ...
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of m ...
Spoken Document Retrieval (SDR) consists in retrieving segments of a speech database that are relevant to a query. The state-of-the-art approach to the SDR problem consists in transcribing the speech data into digital text before applying common Informatio ...
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of m ...
A method is presented to provide a useful searchable index for spoken audio documents. The task differs from the traditional (text) document indexing, because large audio databases are decoded by automatic speech recognition and decoding errors occur frequ ...
This paper presents an indexing system for spoken audio documents. The framework is indexing and retrieval of broadcast news. The proposed indexing system applies latent semantic analysis (LSA) and self-organizing maps (SOM) to map the documents into a sem ...
This paper describes a new latent semantic indexing (LSI) method for spoken audio documents. The framework is indexing broadcast news from radio and TV as a combination of large vocabulary continuous speech recognition (LVCSR), natural language processing ...
In this article we present a novel approach of integrating textual and visual descriptors of images in a unified retrieval structure. The methodology, inspired from text retrieval and information filtering is based on Latent Semantic Indexing (LS1). ...