User Customized HMM/ANN Based Speaker Verification
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Any biometric recognizer is vulnerable to spoofing attacks and hence voice biometric, also called automatic speaker verification (ASV), is no exception; replay, synthesis, and conversion attacks all provoke false acceptances unless countermeasures are used ...
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, ...
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
Deep neural networks (DNNs) have been recently introduced in speech synthesis. In this paper, an investigation on the importance of input features and training data on speaker dependent (SD) DNN-based speech synthesis is presented. Various aspects of the t ...
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low- dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse represen ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of lowdimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representa ...
Different training and adaptation techniques for multilingual Automatic Speech Recognition (ASR) are explored in the context of hybrid systems, exploiting Deep Neural Networks (DNN) and Hidden Markov Models (HMM). In multilingual DNN training, the hidden l ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...