Estimating the Intrinsic Dimension of Data with a Fractal-Based Method
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Extracting low dimensional structure from high dimensional data arises in many applications such as machine learning, statistical pattern recognition, wireless sensor networks, and data compression. If the data is restricted to a lower dimensional subspace ...
Institute of Electrical and Electronics Engineers2012
The use of higher order autocorrelations as features for pattern classification has been usually restricted to second or third orders due to high computational costs. Since the autocorrelation space is a high dimensional space we are interested in reducing ...
In this paper, the problem of estimating the Intrinsic Dimension of a data set is investigated. A fractal-based approach using the Grassberger-Procaccia algorithm is proposed. Since the Grassberger-Procaccia algorithm performs badly on sets of high dimensi ...
In this paper the problem of estimating the intrinsic dimension of a data set is investigated. An approach based on the Grassberger-Procaccia's algorithm has been studied. Since this algorithm does not yield accurate measures in high-dimensional data sets, ...
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about ...
The autocorrelations have been previously used as features for 1D or 2D signal classification in a wide range of applications, like texture classification, face detection and recognition, EEG signal classification, and so on. However, in almost all the cas ...
The behavior of the discrete spectrum of the Schr"odinger operator −\D−V, in quite a general setting, up to a large extent is determined by the behavior of the corresponding heat kernel P(t;x,y) as t→0 and t→∞. If this behavior is powe ...
In this paper, we present a novel semi-supervised dimensionality reduction technique to address the problems of inefficient learning and costly computation in coping with high-dimensional data. Our method named the dual subspace projections (DSP) embeds hi ...
In this paper we consider distributed K-Nearest Neighbor (KNN) search and range query processing in high dimensional data. Our approach is based on Locality Sensitive Hashing (LSH) which has proven very efficient in answering KNN queries in centralized set ...
Sampling, coding, and streaming even the most essential data, e.g., in medical imaging and weather-monitoring applications, produce a data deluge that severely stresses the avail able analog-to-digital converter, communication bandwidth, and digital-storag ...
Institute of Electrical and Electronics Engineers2011