Dirichlet distributionIn probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.
Prior probabilityA prior probability distribution of an uncertain quantity, often simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable.
Posterior predictive distributionIn Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.
Complete metric spaceIn mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M. Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below).
Conjugate priorIn Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
Inverse-gamma distributionIn probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution. Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required.
Sampling frameIn statistics, a sampling frame is the source material or device from which a sample is drawn. It is a list of all those within a population who can be sampled, and may include individuals, households or institutions. Importance of the sampling frame is stressed by Jessen and Salant and Dillman. In many practical situations the frame is a matter of choice to the survey planner, and sometimes a critical one. [...] Some very worthwhile investigations are not undertaken at all because of the lack of an apparent frame; others, because of faulty frames, have ended in a disaster or in cloud of doubt.
Column (database)In a relational database, a column is a set of data values of a particular type, one value for each row of the database. A column may contain text values, numbers, or even pointers to files in the operating system. Columns typically contain simple types, though some relational database systems allow columns to contain more complex data types, such as whole documents, images, or even video clips. A column can also be called an attribute. Each row would provide a data value for each column and would then be understood as a single structured data value.
Database normalizationDatabase normalization or database normalisation (see spelling differences) is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model. Normalization entails organizing the columns (attributes) and tables (relations) of a database to ensure that their dependencies are properly enforced by database integrity constraints.
Geometric transformationIn mathematics, a geometric transformation is any bijection of a set to itself (or to another such set) with some salient geometrical underpinning. More specifically, it is a function whose domain and range are sets of points — most often both or both — such that the function is bijective so that its inverse exists. The study of geometry may be approached by the study of these transformations. Geometric transformations can be classified by the dimension of their operand sets (thus distinguishing between, say, planar transformations and spatial transformations).