Posteriori Probabilities and Likelihoods Combination for Speech and Speaker Recognition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
In this paper, we present initial investigations towards boosting posterior probability based speech recognition systems by estimating more informative posteriors taking into account acoustic context (e.g., the whole utterance), as well as possible prior i ...
This paper investigates a new approach to perform simultaneous speech and speaker recognition. The likelihood estimated by a speaker identification system is combined with the posterior probability estimated by the speech recognizer. So, the joint posterio ...
In this paper, we show that the hinge loss can be interpreted as the neg-log-likelihood of a semi-parametric model of posterior probabilities. From this point of view, SVMs represent the parametric component of a semi-parametric model fitted by a maximum a ...
The paper proposes and discusses a machine approach for identification of unexpected (zero or low probability) words. The approach is based on use of two parallel recognition channels, one channel employing sensory information from the speech signal togeth ...
The paper presents an alternative approach to automatic recognition of speech in which each targeted word is classified by a separate binary classifier against all other sounds. No time alignment is done. To build a recognizer for N words, N parallel binar ...
In this paper, we present initial investigations towards boosting posterior probability based speech recognition systems by estimating more informative posteriors taking into account acoustic context (e.g., the whole utterance), as well as possible prior i ...
In this paper, we show that the hinge loss can be interpreted as the neg-log-likelihood of a semi-parametric model of posterior probabilities. From this point of view, SVMs represent the parametric component of a semi-parametric model fitted by a maximum a ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...