Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
Event cameras are bio-inspired vision sensors that naturally capture the dynamics of a scene, filtering out redundant information. This paper presents a deep neural network approach that unlocks the potential of event cameras on a challenging motion-estima ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
Manual transcription of audio databases for the development of automatic speech recognition (ASR) systems is a costly and time-consuming process. In the context of deriving acoustic models adapted to a specific application, or in low-resource scenarios, it ...
Acoustic modeling based on deep architectures has recently gained remarkable success, with substantial improvement of speech recognition accuracy in several automatic speech recognition (ASR) tasks. For distant speech recognition, the multi-channel deep ne ...
Manual transcription of audio databases for the development of automatic speech recognition (ASR) systems is a costly and time-consuming process. In the context of deriving acoustic models adapted to a specific application, or in low-resource scenarios, it ...
In this paper, we investigate employment of discriminatively trained acoustic features modeled by Subspace Gaussian Mixture Models (SGMMs) for Rich Transcription meeting recognition. More specifically, first, we focus on exploiting various types of complex ...
Acoustic modeling based on deep architectures has recently gained remarkable success, with substantial improvement of speech recognition accuracy in several automatic speech recognition (ASR) tasks. For distant speech recognition, the multi-channel deep ne ...