Publication

A probabilistic framework for joint head tracking and pose estimation

Jean-Marc Odobez, Silèye Oumar Ba
2004
Conference paper
Abstract

Head Tracking and pose estimation are usually considered as two sequential and separate problems: pose is estimated on the head patch provided by a tracking module. However, precision in head pose estimation is dependent on tracking accuracy which itself could benefit from the head orientation knowledge. Therefore, this work considers head tracking and pose estimation as two coupled problems in a probabilistic setting. Head pose models are learned and incorporated into a mixed-state particle filter framework for joint head tracking and pose estimation. Experimental results on real sequences show the effectiveness of the method in estimating more stable and accurate pose values.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.