Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Pareto distributionThe Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population.
Tangent vectorIn mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in Rn. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point is a linear derivation of the algebra defined by the set of germs at .
Object (computer science)In computer science, an object can be a variable, a data structure, a function, or a method. As regions of memory, objects contain a value and are referenced by identifiers. In the object-oriented programming paradigm, an object can be a combination of variables, functions, and data structures; in particular in class-based variations of the paradigm, an object refers to a particular instance of a class. In the relational model of database management, an object can be a table or column, or an association between data and a database entity (such as relating a person's age to a specific person).
Object modelIn computing, object model has two related but distinct meanings: The properties of objects in general in a specific computer programming language, technology, notation or methodology that uses them. Examples are the object models of Java, the Component Object Model (COM), or Object-Modeling Technique (OMT). Such object models are usually defined using concepts such as class, generic function, message, inheritance, polymorphism, and encapsulation.
Object lifetimeIn object-oriented programming (OOP), the object lifetime (or life cycle) of an object is the time between an object's creation and its destruction. Rules for object lifetime vary significantly between languages, in some cases between implementations of a given language, and lifetime of a particular object may vary from one run of the program to another. In some cases, object lifetime coincides with variable lifetime of a variable with that object as value (both for static variables and automatic variables), but in general, object lifetime is not tied to the lifetime of any one variable.
Tangent bundleIn differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is, where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at . There is a natural projection defined by . This projection maps each element of the tangent space to the single point .
Tangent spaceIn mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold. In differential geometry, one can attach to every point of a differentiable manifold a tangent space—a real vector space that intuitively contains the possible directions in which one can tangentially pass through .
Sample mean and covarianceThe sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables. The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales.
Sampling biasIn statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. If this is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling.