**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Tangent bundle

Summary

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is,
where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at .
There is a natural projection
defined by . This projection maps each element of the tangent space to the single point .
The tangent bundle comes equipped with a natural topology (described in a section below). With this topology, the tangent bundle to a manifold is the prototypical example of a vector bundle (which is a fiber bundle whose fibers are vector spaces). A section of is a vector field on , and the dual bundle to is the cotangent bundle, which is the disjoint union of the cotangent spaces of . By definition, a manifold is parallelizable if and only if the tangent bundle is trivial. By definition, a manifold is framed if and only if the tangent bundle is stably trivial, meaning that for some trivial bundle the Whitney sum is trivial. For example, the n-dimensional sphere Sn is framed for all n, but parallelizable only for n = 1, 3, 7 (by results of Bott-Milnor and Kervaire).
One of the main roles of the tangent bundle is to provide a domain and range for the derivative of a smooth function. Namely, if is a smooth function, with and smooth manifolds, its derivative is a smooth function .
The tangent bundle comes equipped with a natural topology (not the disjoint union topology) and smooth structure so as to make it into a manifold in its own right. The dimension of is twice the dimension of .
Each tangent space of an n-dimensional manifold is an n-dimensional vector space. If is an open contractible subset of , then there is a diffeomorphism which restricts to a linear isomorphism from each tangent space to . As a manifold, however, is not always diffeomorphic to the product manifold . When it is of the form , then the tangent bundle is said to be trivial.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications (2)

Related people (2)

Related units

Related courses (25)

Related MOOCs (3)

Related concepts (60)

Related lectures (283)

No results

Loading

Loading

We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman

Differentiable manifolds are a certain class of topological spaces which, in a way we will make precise, locally resemble R^n. We introduce the key concepts of this subject, such as vector fields, dif

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Differentiable manifold

In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.

Tangent bundle

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is, where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at . There is a natural projection defined by . This projection maps each element of the tangent space to the single point .

Fiber bundle

In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle.

Parametric Curves Study Elements

Covers the study of parametric curves and tangent vectors.

Curvilinear Integrals: Tangent Vectors and Oriented Arcs

Explains the tangent vectors and curvilinear integrals along oriented arcs.

Parametric Curves: Introduction

Covers parametric curves, including examples, symmetry, tangent vectors, and derivative signs.

The subject of this thesis lies in the intersection of differential geometry and functional analysis, a domain usually called global analysis. A central object in this work is the group Ds(M) of all o

The aim of this dissertation is to solve numerically the following problem, denoted by P : given a Riemannian manifold and two points a and b belonging to that manifold, find a tangent vector T at a,