Publication

A Study of the Effects of Score Normalisation Prior to Fusion in Biometric Authentication Tasks

Related publications (32)

Few-shot Learning for Efficient and Effective Machine Learning Model Adaptation

Arnout Jan J Devos

Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...
EPFL2024

Boosting likelihood learning with event reweighting

Andrea Wulzer, Alfredo Glioti, Siyu Chen

Extracting maximal information from experimental data requires access to the likelihood function, which however is never directly available for complex experiments like those performed at high energy colliders. Theoretical predictions are obtained in this ...
Springer2024

Topics in statistical physics of high-dimensional machine learning

Hugo Chao Cui

In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
EPFL2024

Bayes-optimal Learning of Deep Random Networks of Extensive-width

Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui

We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
2023

Enhancing Epileptic Seizure Detection with EEG Feature Embeddings

Mahsa Shoaran, Bingzhao Zhu, Arman Zarei

Epilepsy is one of the most prevalent brain disorders that disrupts the lives of millions worldwide. For patients with drug-resistant seizures, there exist implantable devices capable of monitoring neural activity, promptly triggering neurostimulation to r ...
ArXiv2023

Self-Supervised Bayesian representation learning of acoustic emissions from laser powder bed Fusion process for in-situ monitoring

Christian Leinenbach, Sergey Shevchik, Rafal Wróbel, Marc Leparoux

This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
London2023

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.