HMM and IOHMM Modeling of EEG Rhythms for Asynchronous BCI Systems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Non-invasive brain-computer interfaces are traditionally based on mu rhythms, beta rhythms, slow cortical potentials or P300 event-related potentials. However, there is mounting evidence that neural oscillations up to 200 Hz play important roles in process ...
Brain-computer interfaces, as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject's intent. In this paper we exploit a unique feat ...
We compare the use of two Markovian models, HMMs and IOHMMs, to discriminate between three mental tasks for brain computer interface systems using an asynchronous protocol. We show that IOHMMs outperform HMMs but that, probably due to the lack of any prior ...
This article raises various issues in the design of an efficient BCI system in multimedia applications. The main focus is on one specific modality, namely an electroencephalography (EEG)-based BCI. In doing so, we provide an overview of the most recent pro ...
In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identificat ...
In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identificat ...