Cluster analysisCluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, , information retrieval, bioinformatics, data compression, computer graphics and machine learning.
Mutual informationIn probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.
Pattern recognitionPattern recognition is the automated recognition of patterns and regularities in data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent pattern. PR has applications in statistical data analysis, signal processing, , information retrieval, bioinformatics, data compression, computer graphics and machine learning.
Hierarchical clusteringIn data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories: Agglomerative: This is a "bottom-up" approach: Each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. Divisive: This is a "top-down" approach: All observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
K-means clusteringk-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances.
Lie algebraIn mathematics, a Lie algebra (pronounced liː ) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative.
Lie groupIn mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction).
Orthogonal matrixIn linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is where QT is the transpose of Q and I is the identity matrix. This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its inverse: where Q−1 is the inverse of Q. An orthogonal matrix Q is necessarily invertible (with inverse Q−1 = QT), unitary (Q−1 = Q∗), where Q∗ is the Hermitian adjoint (conjugate transpose) of Q, and therefore normal (Q∗Q = QQ∗) over the real numbers.
Determining the number of clusters in a data setDetermining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k-means, k-medoids and expectation–maximization algorithm), there is a parameter commonly referred to as k that specifies the number of clusters to detect.
Clustering high-dimensional dataClustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions. Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions equals the size of the vocabulary.