Concept

Lie algebra

Summary
In mathematics, a Lie algebra (pronounced liː ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative. Given an associative algebra (like for example the space of square matrices), a Lie bracket can be and is often defined through the commutator, namely defining [x,y] = x y - yx correctly defines a Lie bracket in addition to the already existing multiplication operation. Lie algebras are closely related
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading