In mathematics, a Lie algebra (pronounced liː ) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative.
Given an associative algebra (like for example the space of square matrices), a Lie bracket can be and is often defined through the commutator, namely defining correctly defines a Lie bracket in addition to the already existing multiplication operation.
Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings (Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras.
In physics, Lie groups appear as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the identity) may be thought of as infinitesimal symmetry motions. Thus Lie algebras and their representations are used extensively in physics, notably in quantum mechanics and particle physics.
An elementary example (that is not derived from an associative algebra) is the space of three dimensional vectors with the Lie bracket operation defined by the cross product This is skew-symmetric since , and instead of associativity it satisfies the Jacobi identity:
This is the Lie algebra of the Lie group of rotations of space, and each vector may be pictured as an infinitesimal rotation around the axis , with velocity equal to the magnitude of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
In mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction).
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. The commutator of two elements, g and h, of a group G, is the element [g, h] = g−1h−1gh. This element is equal to the group's identity if and only if g and h commute (from the definition gh = hg [g, h] , being [g, h] equal to the identity if and only if gh = hg).
In abstract algebra, the center of a group, G, is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation, Z(G) = . The center is a normal subgroup, Z(G) ⊲ G. As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, G / Z(G), is isomorphic to the inner automorphism group, Inn(G). A group G is abelian if and only if Z(G) = G. At the other extreme, a group is said to be centerless if Z(G) is trivial; i.
Countless aspects of touch and closeness have been questioned in an unprecedented way during the recent Covid epidemic. Social practices as banal as greetings were both reflexively and practically challenged and sometimes deeply altered, resulting in painf ...
2024
Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
Entanglement forging based variational algorithms leverage the bipartition of quantum systems for addressing ground-state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis stat ...