Unsupervised Spectral Subtraction for Noise-Robust ASR on Unknown Transmission Channels
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we present an entropy based method to combine tandem representations of the recently proposed Phase AutoCorrelation (PAC) based features and Mel-Frequency Cepstral Coefficients (MFCC) features. PAC based features, derived from a nonlinear tr ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
Despite sophisticated present day automatic speech recognition (ASR) techniques, a single recognizer is usually incapable of accounting for the varying conditions in a typical natural environment. Higher robustness to a range of noise cases can potentially ...
A new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of two stages. The first stage computes a fuzzy derivative for eight different directions. The second stage uses these fuzzy derivatives to ...
Motivated by the human ability to maintain a high level of speech recognition when large parts of the spectrogram are masked (i.e. dominated) by noise, the original "missing data" (MD) approach to noise robust speech recognition was based on the paradigm w ...
Recently, a nonlinear transformation of autocorrelation coefficients named Phase AutoCorrelation (PAC) coefficients has been considered for feature extraction \cite{ikbal03}. PAC based features show improved robustness to additive noise as a result of two ...
Recently, a nonlinear transformation of autocorrelation coefficients named Phase AutoCorrelation (PAC) coefficients has been considered for feature extraction \cite{ikbal03}. PAC based features show improved robustness to additive noise as a result of two ...
Most conventional features used in speaker authentication are based on estimation of spectral envelopes in one way or another, in the form of cepstrums, e.g., Mel-scale Filterbank Cepstrum Coefficients (MFCCs), Linear-scale Filterbank Cepstrum Coefficients ...