Unsupervised Spectral Subtraction for Noise-Robust ASR on Unknown Transmission Channels
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
Most conventional features used in speaker authentication are based on estimation of spectral envelopes in one way or another, in the form of cepstrums, e.g., Mel-scale Filterbank Cepstrum Coefficients (MFCCs), Linear-scale Filterbank Cepstrum Coefficients ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
A new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of two stages. The first stage computes a fuzzy derivative for eight different directions. The second stage uses these fuzzy derivatives to ...
Recently, a nonlinear transformation of autocorrelation coefficients named Phase AutoCorrelation (PAC) coefficients has been considered for feature extraction \cite{ikbal03}. PAC based features show improved robustness to additive noise as a result of two ...
Despite sophisticated present day automatic speech recognition (ASR) techniques, a single recognizer is usually incapable of accounting for the varying conditions in a typical natural environment. Higher robustness to a range of noise cases can potentially ...
Motivated by the human ability to maintain a high level of speech recognition when large parts of the spectrogram are masked (i.e. dominated) by noise, the original "missing data" (MD) approach to noise robust speech recognition was based on the paradigm w ...
In this paper, we present an entropy based method to combine tandem representations of the recently proposed Phase AutoCorrelation (PAC) based features and Mel-Frequency Cepstral Coefficients (MFCC) features. PAC based features, derived from a nonlinear tr ...
Recently, a nonlinear transformation of autocorrelation coefficients named Phase AutoCorrelation (PAC) coefficients has been considered for feature extraction \cite{ikbal03}. PAC based features show improved robustness to additive noise as a result of two ...