NanomaterialsNanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.
EvaporatorAn evaporator is a device used to turn a liquid into a gas. Some air conditioners and refrigerators use compressed liquids with a low boiling point that vaporizes within the system to cool it, whilst emitting the thermal energy into its surroundings. Evaporators are often used to concentrate a solution. One example is the climbing/falling film plate evaporator, which is used to make condensed milk. Similarly, reduction (cooking) is a process of evaporating liquids from a solution to produce a "reduced" food product, such as wine reduction.
Conductive polymerConductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers.
Charge qubitIn quantum computing, a charge qubit (also known as Cooper-pair box) is a qubit whose basis states are charge states (i.e. states which represent the presence or absence of excess Cooper pairs in the island). In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction (or practically, superconducting tunnel junction) to a superconducting reservoir (see figure). The state of the qubit is determined by the number of Cooper pairs that have tunneled across the junction.
CMOSComplementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", siːmɑːs, -ɒs) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including CMOS BIOS), and other digital logic circuits.
Evaporative coolerAn evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate (that is, it has a large enthalpy of vaporization).
Cathode-ray tubeA cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms (oscilloscope), pictures (television set, computer monitor), radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer.
Lewis structureLewis structures, also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) - are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule. A Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. The Lewis structure was named after Gilbert N. Lewis, who introduced it in his 1916 article The Atom and the Molecule.
Flux qubitIn quantum computing, more specifically in superconducting quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied.
Near-field scanning optical microscopeNear-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. In SNOM, the excitation laser light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field (or near-field) on the far side of the aperture.