Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Object classification and detection aim at recognizing and localizing objects in real-world images. They are fundamental computer vision problems and a prerequisite for full scene understanding. Their difficulty lies in the large number of possible object ...
Programme doctoral en Informatique, Communications et Information2013
Stable myoelectric control of hand prostheses remains an open problem. The only successful human–machine interface is surface electromyography, typically allowing control of a few degrees of freedom. Machine learning techniques may have the potential to re ...
The role of social media as a source of timely and massive information has become more apparent since the era of Web 2.0.Multiple studies illustrated the use of information in social media to discover biomedical and health-related knowledge.Most methods pr ...
This paper introduces a set of algorithms for Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-Carlo estimation of upper bounds on the Bayes-optimal value function is employed to construct an optimistic policy. Secondly, gradient-based algorithm ...
This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the ...
This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear models, which can be updated in closed f ...
In this work, we analyze the generalization ability of distributed online learning algorithms under stationary and non-stationary environments. We derive bounds for the excess-risk attained by each node in a connected network of learners and study the perf ...
In wireless sensor networks, various applications involve learning one or multiple functions of the measurements observed by sensors, rather than the measurements themselves. This paper focuses on the computation of type-threshold functions which include t ...
In this paper we give a preview of our system for automatically evaluating attention in the classroom. We demonstrate our current behaviour metrics and preliminary observations on how they reflect the reactions of people to the given lecture. We also intro ...
Domain language model adaptation consists in re-estimating probabilities of a baseline LM in order to better match the specifics of a given broad topic of interest. To do so, a common strategy is to retrieve adaptation texts from the Web based on a given d ...