Variation (music)In music, variation is a formal technique where material is repeated in an altered form. The changes may involve melody, rhythm, harmony, counterpoint, timbre, orchestration or any combination of these. Mozart's Twelve Variations on "Ah vous dirai-je, Maman" (1785), known in the English-speaking world as "Twinkle, Twinkle, Little Star" exemplifies a number of common variation techniques.
Population geneticsPopulation genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.
Valuation (algebra)In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry.
Residual income valuationResidual income valuation (RIV; also, residual income model and residual income method, RIM) is an approach to equity valuation that formally accounts for the cost of equity capital. Here, "residual" means in excess of any opportunity costs measured relative to the book value of shareholders' equity; residual income (RI) is then the income generated by a firm after accounting for the true cost of capital. The approach is largely analogous to the EVA/MVA based approach, with similar logic and advantages.
Valuation ringIn abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D. Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring.