In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.
Given a field F, if D is a subring of F such that either x or x−1 belongs to
D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.
The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where
dominates if and .
Every local ring in a field K is dominated by some valuation ring of K.
An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.
There are several equivalent definitions of valuation ring (see below for the characterization in terms of dominance). For an integral domain D and its field of fractions K, the following are equivalent:
For every nonzero x in K, either x is in D or x−1 is in D.
The ideals of D are totally ordered by inclusion.
The principal ideals of D are totally ordered by inclusion (i.e. the elements in D are, up to units, totally ordered by divisibility.)
There is a totally ordered abelian group Γ (called the value group) and a valuation ν: K → Γ ∪ {∞} with D = { x ∈ K | ν(x) ≥ 0 }.
The equivalence of the first three definitions follows easily. A theorem of states that any ring satisfying the first three conditions satisfies the fourth: take Γ to be the quotient K×/D× of the unit group of K by the unit group of D, and take ν to be the natural projection. We can turn Γ into a totally ordered group by declaring the residue classes of elements of D as "positive".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In commutative algebra, an element b of a commutative ring B is said to be integral over A, a subring of B, if there are n ≥ 1 and aj in A such that That is to say, b is a root of a monic polynomial over A. The set of elements of B that are integral over A is called the integral closure of A in B. It is a subring of B containing A. If every element of B is integral over A, then we say that B is integral over A, or equivalently B is an integral extension of A.
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A. The appellation regular is justified by the geometric meaning.
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
Maximally localized Wannier functions (MLWFs) are widely used in electronic-structure calculations. We have recently developed automated approaches to generate MLWFs that represent natural tight-binding sets of atomic-like orbitals; these describe accurate ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Many rivers in the Balkan Peninsula are recognised at the European level for the biodiversity they host and their strong cultural heritage. However, they are experiencing significant anthropogenic changes, where their biodiversity and cultural values are o ...