Aldol reactionThe aldol reaction (aldol addition) is a reaction that combines two carbonyl compounds (aldehydes or ketones) to form a new β-hydroxy carbonyl compound. These products are known as aldols, from the aldehyde + alcohol, a structural motif seen in many of the products. The use of aldehyde in the name comes from its discovery history, where aldehydes were first used in the reaction and not ketones. Aldol structural units are found in many important molecules, whether naturally occurring or synthetic.
Aldol condensationAn aldol condensation is a condensation reaction in organic chemistry in which two carbonyl moieties (of aldehydes or ketones) react to form a β-hydroxyaldehyde or β-hydroxyketone (an aldol reaction), and this is then followed by dehydration to give a conjugated enone. The overall reaction equation is as follows (where the Rs can be H) Aldol condensations are important in organic synthesis and biochemistry as ways to form carbon–carbon bonds.
GlycosideIn chemistry, a glycoside ˈɡlaɪkəsaɪd is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators.
Glycosidic bondA glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate. A glycosidic bond is formed between the hemiacetal or hemiketal group of a saccharide (or a molecule derived from a saccharide) and the hydroxyl group of some compound such as an alcohol. A substance containing a glycosidic bond is a glycoside.
Knoevenagel condensationIn organic chemistry, the Knoevenagel condensation (ˈknøːvənaːɡl̩) reaction is a type of chemical reaction named after German chemist Emil Knoevenagel. It is a modification of the aldol condensation. A Knoevenagel condensation is a nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction in which a molecule of water is eliminated (hence condensation). The product is often an α,β-unsaturated ketone (a conjugated enone). In this reaction the carbonyl group is an aldehyde or a ketone.
AldolIn organic chemistry, an aldol describes a structural motif consisting of a 3-hydroxy ketone or 3-hydroxyaldehyde. An aldol consisting of a 3-hydroxy ketone is called a β-hydroxy ketone, and an aldol consisting of a 3-hydroxy aldehyde is called a β-hydroxy aldehyde. The term "aldol" may refer to 3-hydroxybutanal. Aldols are usually the product of aldol addition, i.e. the condensation of two aldehydes. Stereoselective syntheses of aldols is an active area of asymmetric synthesis.
Natural productA natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis (both semisynthesis and total synthesis) and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets.