Publication

Steady state Kalman filtering for sensorless control of hybrid stepper motors

Yves Perriard, Jan Persson
2003
Conference paper
Abstract

Extended Kalman filtering techniques have been successfully used as sensorless control schemes on many different types of synchronous motors. One big disadvantage of the extended Kalman filtering technique is the large computational cost. Even with today's powerful DSPs, it is difficult to achieve effective real-time implementations. It is especially problematic for high speed motors or motors with many pole pairs such as hybrid stepper motors. In this article, it is shown how a steady-state version of the Kalman filter can be used to calculate the rotor position and speed for a hybrid stepper motor. By using a steady-state Kalman filter the computational effort can be drastically reduced. The proposed method is verified by a closed loop simulation of a hybrid stepper motor with additional current and speed regulators

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.