Substitution–permutation networkIn cryptography, an SP-network, or substitution–permutation network (SPN), is a series of linked mathematical operations used in block cipher algorithms such as AES (Rijndael), 3-Way, Kalyna, Kuznyechik, PRESENT, SAFER, SHARK, and Square. Such a network takes a block of the plaintext and the key as inputs, and applies several alternating rounds or layers of substitution boxes (S-boxes) and permutation boxes (P-boxes) to produce the ciphertext block. The S-boxes and P-boxes transform of input bits into output bits.
Block cipherIn cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key.
Impossible differential cryptanalysisIn cryptography, impossible differential cryptanalysis is a form of differential cryptanalysis for block ciphers. While ordinary differential cryptanalysis tracks differences that propagate through the cipher with greater than expected probability, impossible differential cryptanalysis exploits differences that are impossible (having probability 0) at some intermediate state of the cipher algorithm. Lars Knudsen appears to be the first to use a form of this attack, in the 1998 paper where he introduced his AES candidate, DEAL.
Confusion and diffusionIn cryptography, confusion and diffusion are two properties of the operation of a secure cipher identified by Claude Shannon in his 1945 classified report A Mathematical Theory of Cryptography. These properties, when present, work together to thwart the application of statistics and other methods of cryptanalysis. Confusion in a symmetric cipher is obscuring the local correlation between the input (plaintext) and output (ciphertext) by varying the application of the key to the data, while diffusion is hiding the plaintext statistics by spreading it over a larger area of ciphertext.
Differential cryptanalysisDifferential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key).
Substitution cipherIn cryptography, a substitution cipher is a method of encrypting in which units of plaintext are replaced with the ciphertext, in a defined manner, with the help of a key; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth. The receiver deciphers the text by performing the inverse substitution process to extract the original message. Substitution ciphers can be compared with transposition ciphers.
Advanced Encryption StandardThe Advanced Encryption Standard (AES), also known by its original name Rijndael (ˈrɛindaːl), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes.
TwofishIn cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish. Twofish's distinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex key schedule. One half of an n-bit key is used as the actual encryption key and the other half of the n-bit key is used to modify the encryption algorithm (key-dependent S-boxes).
CryptanalysisCryptanalysis (from the Greek kryptós, "hidden", and analýein, "to analyze") refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown. In addition to mathematical analysis of cryptographic algorithms, cryptanalysis includes the study of side-channel attacks that do not target weaknesses in the cryptographic algorithms themselves, but instead exploit weaknesses in their implementation.
Linear cryptanalysisIn cryptography, linear cryptanalysis is a general form of cryptanalysis based on finding affine approximations to the action of a cipher. Attacks have been developed for block ciphers and stream ciphers. Linear cryptanalysis is one of the two most widely used attacks on block ciphers; the other being differential cryptanalysis. The discovery is attributed to Mitsuru Matsui, who first applied the technique to the FEAL cipher (Matsui and Yamagishi, 1992).