Effect sizeIn statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event (such as a heart attack) happening.
Anti-reflective coatingAn antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy.
Photographic filmPhotographic film is a strip or sheet of transparent film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine the sensitivity, contrast, and of the film. The emulsion will gradually darken if left exposed to light, but the process is too slow and incomplete to be of any practical use. Instead, a very short exposure to the image formed by a camera lens is used to produce only a very slight chemical change, proportional to the amount of light absorbed by each crystal.
Ion sourceAn ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines. Electron ionization Electron ionization is widely used in mass spectrometry, particularly for organic molecules. The gas phase reaction producing electron ionization is M{} + e^- -> M^{+\bullet}{} + 2e^- where M is the atom or molecule being ionized, e^- is the electron, and M^{+\bullet} is the resulting ion.
High-κ dielectricIn the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant (κ, kappa), as compared to silicon dioxide. High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law.
Function of several complex variablesThe theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables (and analytic space), which the Mathematics Subject Classification has as a top-level heading. As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables zi.
Riemann mapping theoremIn complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping (i.e. a bijective holomorphic mapping whose inverse is also holomorphic) from onto the open unit disk This mapping is known as a Riemann mapping. Intuitively, the condition that be simply connected means that does not contain any “holes”. The fact that is biholomorphic implies that it is a conformal map and therefore angle-preserving.
Particle sizeParticle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles). The notion of particle size applies to particles in colloids, in ecology, in granular material (whether airborne or not), and to particles that form a granular material (see also grain size). Particle size measurement There are several methods for measuring particle size and particle size distribution. Some of them are based on light, other on ultrasound, or electric field, or gravity, or centrifugation.