Numerical analysis of a non-singular boundary integral method: Part II: The general case
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to impro ...
The goal of this project is to numerically solve the Navier-Stokes equations by using different numerical methods with particular emphasis on solving the problem of the flow past a square cylinder. In particular, we use the finite element method based on P ...
This project deals with the finite element approximation of an inverse problem for the monodomain equation, which models the propagation of the electrical potential in the cardiac muscle. The goal consists in recovering the shape of an infarcted area inside ...
A point-wise approach that can be used efficiently in the numerical solution of Electric Field Integral Equations is introduced. The algorithm is based on the so-called magic distance concept, which defines exactly the point-to-point equivalent of a four-d ...
The present work concerns the approximation of the solution map S associated to the parametric Helmholtz boundary value problem, i.e., the map which associates to each (real) wavenumber belonging to a given interval of interest the corresponding solution o ...
The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L^2 and the H^1 ...
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
We extend the mimetic finite difference (MFD) method to the numerical treatment of magnetostatic fields problems in mixed div-curl form for the divergence-free magnetic vector potential. To accomplish this task, we introduce three sets of degrees of freedo ...
Finite deformations of planar slender beams for which shear strain can be neglected are described by the extensible-elastica model, where the strain-displacement relation is geometrically exact and the Biot stress–strain relation is linear. However, if the ...
The aim of the project is double: to understand the flexibility of the Isogeometric Analysis tools through the solution of some PDEs problems; to test the improvement in the computational time given by a partial loops vectorization at compile-time of the L ...