Nuclear Overhauser effectThe nuclear Overhauser effect (NOE) is the transfer of nuclear spin polarization from one population of spin-active nuclei (e.g. 1H, 13C, 15N etc.) to another via cross-relaxation. A phenomenological definition of the NOE in nuclear magnetic resonance spectroscopy (NMR) is the change in the integrated intensity (positive or negative) of one NMR resonance that occurs when another is saturated by irradiation with an RF field. The change in resonance intensity of a nucleus is a consequence of the nucleus being close in space to those directly affected by the RF perturbation.
Absolute magnitudeAbsolute magnitude (M) is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly , without extinction (or dimming) of its light due to absorption by interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale.
Electron magnetic momentIn atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μe) is In units of the Bohr magneton (μB), it is -1.00115965218059μB, a value that was measured with a relative accuracy of 1.3e-13. The electron is a charged particle with charge −e, where e is the unit of elementary charge.
Hyperfine structureIn atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds. In atoms, hyperfine structure arises from the energy of the nuclear magnetic dipole moment interacting with the magnetic field generated by the electrons and the energy of the nuclear electric quadrupole moment in the electric field gradient due to the distribution of charge within the atom.
Limiting magnitudeIn astronomy, limiting magnitude is the faintest apparent magnitude of a celestial body that is detectable or detected by a given instrument. In some cases, limiting magnitude refers to the upper threshold of detection. In more formal uses, limiting magnitude is specified along with the strength of the signal (e.g., "10th magnitude at 20 sigma"). Sometimes limiting magnitude is qualified by the purpose of the instrument (e.g., "10th magnitude for photometry") This statement recognizes that a photometric detector can detect light far fainter than it can reliably measure.
First-magnitude starFirst-magnitude stars are the brightest stars in the night sky, with apparent magnitudes lower (i.e. brighter) than +1.50. Hipparchus, in the 1st century BC, introduced the magnitude scale. He allocated the first magnitude to the 20 brightest stars and the sixth magnitude to the faintest stars visible to the naked eye. In the 19th century, this ancient scale of apparent magnitude was logarithmically defined, so that a star of magnitude 1.00 is exactly 100 times as bright as one of 6.00.
Spin–spin relaxationIn physics, the spin–spin relaxation is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–spin relaxation time, known as T2, a time constant characterizing the signal decay. It is named in contrast to T1, the spin–lattice relaxation time.
Chromate and dichromateChromate salts contain the chromate anion, CrO42−. Dichromate salts contain the dichromate anion, Cr2O72−. They are oxyanions of chromium in the +6 oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible. Potassium-chromate-sample.jpg|[[potassium chromate]] Potassium-dichromate-sample.jpg|[[potassium dichromate]] Chromates react with hydrogen peroxide, giving products in which peroxide, O22−, replaces one or more oxygen atoms.
Nuclear magnetic resonance spectroscopyNuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy.
Photographic magnitudePhotographic magnitude (mph or mp ) is a measure of the relative brightness of a star or other astronomical object as imaged on a photographic film emulsion with a camera attached to a telescope. An object's apparent photographic magnitude depends on its intrinsic luminosity, its distance and any extinction of light by interstellar matter existing along the line of sight to the observer. Photographic observations have now been superseded by electronic photometry such as CCD charge-couple device cameras that convert the incoming light into an electric current by the photoelectric effect.