On a graph coloring problem arising from discrete tomography
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mining large graphs has now become an important aspect of multiple diverse applications and a number of computer systems have been proposed to provide runtime support. Recent interest in this area has led to the construction of single machine graph computa ...
An ordered graph H is a simple graph with a linear order on its vertex set. The corresponding Turan problem, first studied by Pach and Tardos, asks for the maximum number ex(
Given a graph H and a set of graphs F, let ex(n, H, F) denote the maximum possible number of copies of H in an T-free graph on n vertices. We investigate the function ex(n, H, F), when H and members of F are cycles. Let C-k denote the cycle of length k and ...
A semi-algebraic graph G = (V, E) is a graph where the vertices are points in R-d, and the edge set E is defined by a semi-algebraic relation of constant complexity on V. In this note, we establish the following Ramsey-Turan theorem: for every integer p >= ...
The vertex set of the Kneser graph K(n, k) is V = (([n])(k)) and two vertices are adjacent if the corresponding sets are disjoint. For any graph F, the largest size of a vertex set U subset of V such that K(n, k)[U] is F-free, was recently determined by Al ...
Determining the size of a maximum independent set of a graph G, denoted by alpha(G), is an NP-hard problem. Therefore many attempts are made to find upper and lower bounds, or exact values of alpha(G) for special classes of graphs. This paper is aimed towa ...
We consider the problem of reliably connecting an arbitrarily large set of computers (nodes) with communication channels. Reliability means here the ability, for any two nodes, to remain connected (i.e., their ability to communicate) with probability at le ...
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free fam ...
Recently, Pawlik et al. have shown that triangle-free intersection graphs of line segments in the plane can have arbitrarily large chromatic number. Specifically, they construct triangle-free segment intersection graphs with chromatic number Θ(log log n). ...
A family of sets in the plane is simple if the intersection of any subfamily is arc-connected, and it is pierced by a line L if the intersection of any member with L is a nonempty segment. It is proved that the intersection graphs of simple families of com ...