On a graph coloring problem arising from discrete tomography
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the ...
We study complexity issues related to some coloring problems in grids: we examine in particular the case of List coloring, of Precoloring extension and of (p, q)-List coloring, the case of List coloring in bipartite graphs where lists in the first part of ...
An optimal linear-time algorithm for interprocedural register allocation in high level synthesis is presented. Historically, register allocation has been modeled as a graph coloring problem, which is nondeterministic polynomial time-complete in general; ho ...
Extensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V-1,...,V-k of the vertex set of G such that, for some specified neighborhood (N) over ...
A set S of n points is 2-color universal for a graph G on n vertices if for every proper 2-coloring of G and for every 2-coloring of S with the same sizes of color classes as G has, G is straight-line embeddable on S. We show that the so-called double chai ...
Let r and w be a fixed positive numbers, w < r. In a bold drawing of a graph, every vertex is represented by a disk of radius r, and every edge by a narrow rectangle of width w. We solve a problem of van Kreveld [K09] by showing that every graph admits a b ...
We consider right angle crossing (RAC) drawings of graphs in which the edges are represented by polygonal arcs and any two edges can cross only at a right angle. We show that if a graph with n vertices admits a RAC drawing with at most 1 bend or 2 bends pe ...
Given a geometric hypergraph (or a range-space) H=(V,E), a coloring of its vertices is said to be conflict-free if for every hyperedge S∈E there is at least one vertex in S whose color is distinct from the colors of all other vertices i ...
For every k and r, we construct a finite family of axis-parallel rectangles in the plane such that no matter how we color them with k colors, there exists a point covered by precisely r members of the family, all of which have the same color. For r = 2, th ...