Pseudo-polynomial timeIn computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the numeric value of the input (the largest integer present in the input)—but not necessarily in the length of the input (the number of bits required to represent it), which is the case for polynomial time algorithms. In general, the numeric value of the input is exponential in the input length, which is why a pseudo-polynomial time algorithm does not necessarily run in polynomial time with respect to the input length.
Polynomial-time reductionIn computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is polynomial, then the first problem is polynomial-time reducible to the second.
Polynomial hierarchyIn computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH.
Time complexityIn computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Polynomial-time approximation schemeIn computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 and produces a solution that is within a factor 1 + ε of being optimal (or 1 – ε for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most (1 + ε)L, with L being the length of the shortest tour.
PolynomialIn mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1. Polynomials appear in many areas of mathematics and science.
HypergraphIn mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a directed hypergraph is a pair , where is a set of elements called nodes, vertices, points, or elements and is a set of pairs of subsets of . Each of these pairs is called an edge or hyperedge; the vertex subset is known as its tail or domain, and as its head or codomain. The order of a hypergraph is the number of vertices in .
Fully polynomial-time approximation schemeA fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It returns as output a value is at least times the correct value, and at most times the correct value. In the context of optimization problems, the correct value is understood to be the value of the optimal solution, and it is often implied that an FPTAS should produce a valid solution (and not just the value of the solution).
Scheduling (computing)In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows. The scheduling activity is carried out by a process called scheduler. Schedulers are often designed so as to keep all computer resources busy (as in load balancing), allow multiple users to share system resources effectively, or to achieve a target quality-of-service.
Knapsack problemThe knapsack problem is the following problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.