Binding-Energies and Cluster Formation at Low Metal-Deposition - Ag on Si and Sio2
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We report on the temperature dependence of the ZrTe5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure ac ...
Metal monochalcogenides (MX) have recently been rediscovered as two-dimensional materials with electronic properties highly dependent on the number of layers. Although some intriguing properties appear in the few-layer regime, the carrier mobility of MX co ...
Two-dimensional (2D) materials are under intensive investigation recently due to variety of electronic properties, ranging from insulators (h-BN) to semi-metals (graphene), semiconductors (MoS2, WSe2) with wide variability of band-gap and correlated phases ...
We study the detailed temperature and composition dependence of the resistivity, rho(T), and thermopower, S(T), for a series of layered bismuth chalcogenides Bi2Te3-xSex, and report the stoichiometry dependence of the optical band gap. In the resistivity o ...
The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
With its tunable band-gap and its unique optical and electronic properties black phosphorus (BP) opens exciting opportunities for optoelectronic nanotechnology. The band-gap extends from the visible to the mid-infrared spectral range, as a function of samp ...
Nanocomposite coatings composed of two phases with atomically sharp phase boundaries, show interesting mechanical properties. These properties are often originating from their high interface to volume ratio. Composites of nanocrystalline titanium nitride ( ...
We study the adsorption and the growth of FePc and MnPc layer(s) on the Au(111) surface. The evolution of the Au(111) Shockley surface state by molecular deposition has been investigated by means of photoemission spectroscopy. The Shockley surface state un ...
Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to unde ...