In this thesis we focus on understanding, measuring and describing the performance of Opportunistic Networks (ONs) and their applications. An “opportunistic network” is a term introduced to describe a sparse, wireless, ad hoc network with highly mobile nodes. The opportunistic networking paradigm deviates from the traditional end-to-end connectivity concept: Forwarding is based on intermittent connectivity between mobile nodes (typically, users with wireless devices); complete routes between sources and destinations rarely exist. Due to this unique property of spontaneous link establishment, the challenges that exist in ONs are specific. The unstructured nature of these networks makes it difficult to give any performance guarantees on data dissemination. For this reason, in Part I of this thesis we explore the dynamics that affect the performance of opportunistic networks. We choose a number of meaningful scenarios where our models and algorithms can be validated using large and credible data sets. We show that a drift and jump model that takes a spatial approach succeeds in capturing the impact of infrastructure and mobile-to-mobile exchanges on an opportunistic content update system. We describe the effects of these dynamics by using the age distribution of a dynamic piece of data (i.e., information updates) as the performance measure. The model also succeeds in capturing a strong bias in user mobility and reveals the existence of regions, whose statistics play a critical role in the performance perceived in the network. We exploit these findings to design an application for greedy infrastructure placement, which relies on the model approximation for a large number of nodes. Another great challenge of opportunistic networking lies in the fact that the bandwidth available on wireless links, coupled with ad hoc networking, failed to rival the capacity of backbones and to establish opportunistic networks as an alternative to infrastructure-based networks. For this reason, we never study ONs in an isolated context. Instead, we consider the applications that leverage interconnection between opportunistic networks and legacy networks and we study the benefits this synergy brings to both. Following this approach, we use a large operator-provided data set to show that opportunistic networks (based on Wi-Fi) are capable of offloading a significant amount of traffic from 3G networks. At the same time, the offloading algorithms we propose reduce the amount of energy consumed by mobiles, while requiring Wi-Fi coverage that is several times smaller than in the case of real-time offloading. Again we confirm and reuse the fact that user mobility is biased towards certain regions of the network. In Part II of this thesis, we treat another issue that is essential for the acceptance and evolution of opportunistic networks and their applications. Namely, we address the absence of experimental results that would support the findings of simulation based studies. Al
Denis Gillet, Juan Carlos Farah