MagnetismMagnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves.
Particle statisticsParticle statistics is a particular description of multiple particles in statistical mechanics. A key prerequisite concept is that of a statistical ensemble (an idealization comprising the state space of possible states of a system, each labeled with a probability) that emphasizes properties of a large system as a whole at the expense of knowledge about parameters of separate particles. When an ensemble describes a system of particles with similar properties, their number is called the particle number and usually denoted by N.
Material properties (thermodynamics)The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are: Compressibility (or its inverse, the bulk modulus) Isothermal compressibility Adiabatic compressibility Specific heat (Note - the extensive analog is the heat capacity) Specific heat at constant pressure Specific heat at constant volume Coefficient of thermal expansion where P is pressure, V is volume, T is temperature, S is entropy, and N is the number of particles.
Magnetic energyMagnetic energy and electrostatic potential energy are related by Maxwell's equations. The potential energy of a magnet or magnetic moment in a magnetic field is defined as the mechanical work of the magnetic force (actually magnetic torque) on the re-alignment of the vector of the magnetic dipole moment and is equal to: while the energy stored in an inductor (of inductance ) when a current flows through it is given by: This second expression forms the basis for superconducting magnetic energy storage.
Independent electron approximationIn condensed matter physics, the independent electron approximation is a simplification used in complex systems, consisting of many electrons, that approximates the electron-electron interaction in crystals as null. It is a requirement for both the free electron model and the nearly-free electron model, where it is used alongside Bloch's theorem. In quantum mechanics, this approximation is often used to simplify a quantum many-body problem into single-particle approximations.
Field strengthIn physics, field strength is the magnitude of a vector-valued field (e.g., in volts per meter, V/m, for an electric field E). For example, an electromagnetic field has both electric field strength and magnetic field strength. As an application, in radio frequency telecommunications, the signal strength excites a receiving antenna and thereby induces a voltage at a specific frequency and polarization in order to provide an input signal to a radio receiver.
Charge densityIn electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface.
Brownian bridgeA Brownian bridge is a continuous-time stochastic process B(t) whose probability distribution is the conditional probability distribution of a standard Wiener process W(t) (a mathematical model of Brownian motion) subject to the condition (when standardized) that W(T) = 0, so that the process is pinned to the same value at both t = 0 and t = T. More precisely: The expected value of the bridge at any t in the interval [0,T] is zero, with variance , implying that the most uncertainty is in the middle of the bridge, with zero uncertainty at the nodes.
Earnshaw's theoremEarnshaw's theorem states that a collection of point charges cannot be maintained in a stable stationary equilibrium configuration solely by the electrostatic interaction of the charges. This was first proven by British mathematician Samuel Earnshaw in 1842. It is usually cited in reference to magnetic fields, but was first applied to electrostatic fields. Earnshaw's theorem applies to classical inverse-square law forces (electric and gravitational) and also to the magnetic forces of permanent magnets, if the magnets are hard (the magnets do not vary in strength with external fields).
Free electron modelIn solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.