T cell fate specification and alphabeta/gammadelta lineage commitment
Related publications (83)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Embryonic stem (ES) cells have the capacity to give rise to all cell types of the adult organism and can be used as a model to study early cell fate decisions as they closely recapitulate in vivo events. The M and G1 phases have been suggested to be the ke ...
Hematopoietic stem cells (HSCs) are responsible for the continuous production of all blood cells. This unique ability has made it possible to successfully use HSCs in the clinical setting to remedy various blood disorders. However, despite six decades of r ...
Several approaches to combine bone substitutes with biomolecules, cells or mechanical loading have been explored as an alternative to the limitation and risk-related bone auto- and allo-grafts. In particular, human bone progenitor cells seeded in porous po ...
Although stem cells hold tremendous potential for clinical applications, their in vitro manipulation remains very challenging. In vivo, stem cells reside in intricate 3D microenvironments, termed niche, in which many local and systemic extrinsic factors ar ...
In animal embryos, transcription is mostly silent for several cell divisions, until the release of the first major wave of embryonic transcripts through so-called zygotic genome activation (ZGA). Maternally provided ZGA-triggering factors have been identif ...
The thymus is the primary organ for T cell differentiation and maturation. Its stroma forms a characteristic sponge-like 3D structure mainly composed of thymic epithelial cells. Despite of this unconventional epithelial architecture, TECs express markers a ...
Most papers related to thymus focus on the cortical and medullary epithelial cells whereas the subcapsular layer is ignored. In this thesis, we are providing new informations about the subcapsular thymic epithelial cells (TECs) by comparing them to cortica ...
In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progeni ...
Stem cell therapies hold tremendous potential for tissue and organ regeneration. Yet, there remains significant need for better ex vivo culture and manipulation methods. On the one hand, many tissue-specific stem cells cannot be propagated without causing ...
Hematopoietic stem cells (HSC) are responsible for the life-long maintenance of our blood system. Their long-term capacity to both self-renew and differentiate and the ability to efficiently âhomeâ to their bone marrow niches when injected in the blood ...