Multiple functions of Notch signaling in self-renewing organs and cancer
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The Notch signaling pathway regulates many aspects of embryonic development, as well as differentiation processes and tissue homeostasis in multiple adult organ systems. Disregulation of Notch signaling is associated with several human disorders, including ...
The difficulty to find compatible donors for bone marrow transplantation makes the need for an alternative source of HSCs urgent. HSC derived from patient-specific iPS cells are ideal candidates for this purpose. Nevertheless, although HSCs are the best ch ...
Notch signaling is among one of the highly conserved developmental pathways. Because of its role in the regulation of stem cell self-renewal and cell fate decisions, Notch signaling maintains tissue homeostasis in several organs such as thymus, skin and in ...
ABSTRACT: BACKGROUND: Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously ...
BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. ...
Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" ...
Transforming Growth Factor beta (TGFβ) signaling plays an important role in a variety of cellular processes during embryonic development, adult tissue homeostasis and cancer. TGFβI ligand is a potent inhibitor of early hematopoietic progenitor [1] cells in ...
The Hedgehog (Hh) signaling pathway is a developmentally conserved regulator of stem cell function. Several reports suggested that Hh signaling is an important regulator of hematopoietic stem cell (HSC) maintenance and differentiation. Here we test this hy ...
Melanocyte stem cells in the bulge area of hair follicles are responsible for hair pigmentation, and defects in them cause hair graying. Here we describe the process of melanocyte stem cell entry into the quiescent state and show that niche-derived transfo ...
In animals, pigment cells are essential for coloration, as seen in feathers, fur, skin and eyes. In mammals, neural crest-derived melanocytes constitute the major population of pigment cells that is located mainly in the skin epidermis, as well as in hair ...