A Possible Solution of the G-Dwarf Problem in the Frame-work of Closed Models with a Time-Dependent IMF
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
We present a one-dimensional, local thermodynamic equilibrium homogeneous analysis of 132 stars observed at high resolution with ESPaDOnS. This represents the largest sample observed at high resolution (R similar to 40 000) from the Pristine survey. This s ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after e ...
We study the electrical conductivity of hot Abelian plasma containing scalar charge carriers in the leading logarithmic order in coupling constant alpha using the Boltzmann kinetic equation. The leading contribution to the collision integral is due to the ...
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike ...
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
We show that the finite time blow up solutions for the co-rotational Wave Maps problem constructed in [7,15] are stable under suitably small perturbations within the co-rotational class, provided the scaling parameter λ(t)=t−1−ν is sufficiently close to ...
The aim of this work is to propose and analyse a new high-order discontinuous Galerkin finite element method for the time integration of a Cauchy problem for second-order ordinary differential equations. These equations typically arise after space semidisc ...