Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Statistical models of neural activity are at the core of the field of modern computational neuroscience. The activity of single neurons has been modeled to successfully explain dependencies of neural dynamics to its own spiking history, to external stimuli ...
Previous research has shown that postnatal exposure to simple, synthetic sounds can affect the sound representation in the auditory cortex as reflected by changes in the tonotopic map or other relatively simple tuning properties, such as AM tuning. However ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields ...
To appreciate how neural circuits in the brain control behaviors, we must identify how the neurons comprising the circuit are connected. Neuronal connectivity is difficult to determine experimentally, whereas neuronal activity can often be readily measured ...
In crowding, flankers impair target perception. For example, Vernier offset discrimination deteriorates when the Vernier is flanked by parallel lines. Pooling models explain crowding by averaging neural activity over both Vernier and flankers. Recently, ho ...
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning r ...
Statistical models of neural activity are integral to modern neuroscience. Recently interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on ne ...
How do animals learn to repeat behaviors that lead to the obtention of food or other “rewarding” objects? As a biologically plausible paradigm for learning in spiking neural networks, spike-timing dependent plasticity (STDP) has been shown to perform well ...
Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a stu ...