**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Capacity-achieving sequences

Abstract

A capacity-achieving sequence of degree distributions for the erasure channel is, roughly speaking, a sequence of degree distributions such that graphs sampled uniformly at random satisfying those degree constraints lead to codes that perform arbitrarily close to the capacity of the erasure channel when decoded with a simple erasure decoder described in the paper. We will prove a necessary property called flatness for a sequence of degree distributions to be capacity-achieving, and will comment on possible applications to the design of capacity-achieving sequences on other communication channels

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (2)

Related publications (42)

Related concepts (32)

Ontological neighbourhood

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Channel capacity, in electrical engineering, computer science, and information theory, is the tight upper bound on the rate at which information can be reliably transmitted over a communication channel. Following the terms of the noisy-channel coding theorem, the channel capacity of a given channel is the highest information rate (in units of information per unit time) that can be achieved with arbitrarily small error probability. Information theory, developed by Claude E.

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.

In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are , which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel.

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...

We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM code ...

An important class of modern channel codes is the capacity-achieving sequences of low-density parity-check block codes. Such sequences are usually designed for the binary erasure channel and are decoded by iterative message-passing algorithms. In this pape ...