Search algorithmIn computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values. Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics. The appropriate search algorithm to use often depends on the data structure being searched, and may also include prior knowledge about the data.
Tridiagonal matrixIn linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main diagonal). For example, the following matrix is tridiagonal: The determinant of a tridiagonal matrix is given by the continuant of its elements. An orthogonal transformation of a symmetric (or Hermitian) matrix to tridiagonal form can be done with the Lanczos algorithm.
Computably enumerable setIn computability theory, a set S of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: There is an algorithm such that the set of input numbers for which the algorithm halts is exactly S. Or, equivalently, There is an algorithm that enumerates the members of S. That means that its output is simply a list of all the members of S: s1, s2, s3, ... . If S is infinite, this algorithm will run forever.
Umbral calculusIn mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to "prove" them. These techniques were introduced by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing.
Matrix similarityIn linear algebra, two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix P such that Similar matrices represent the same linear map under two (possibly) different bases, with P being the change of basis matrix. A transformation A ↦ P−1AP is called a similarity transformation or conjugation of the matrix A. In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that P be chosen to lie in H.
Modal μ-calculusIn theoretical computer science, the modal μ-calculus (Lμ, Lμ, sometimes just μ-calculus, although this can have a more general meaning) is an extension of propositional modal logic (with many modalities) by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic. The (propositional, modal) μ-calculus originates with Dana Scott and Jaco de Bakker, and was further developed by Dexter Kozen into the version most used nowadays.