Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Matrice tridiagonaleEn mathématiques, en algèbre linéaire, une matrice tridiagonale est une matrice dont tous les coefficients qui ne sont ni sur la diagonale principale, ni sur la diagonale juste au-dessus, ni sur la diagonale juste en dessous, sont nuls. Par exemple, la matrice suivante est tridiagonale : Une matrice , dont on note les coefficients a, est dite tridiagonale si : a = 0 pour tous (i, j) tels que i – j > 1, autrement dit si c'est une matrice de Hessenberg à la fois supérieure et inférieure.
Récursivement énumérableEn théorie de la calculabilité, un ensemble d'entiers naturels est récursivement énumérable ou semi-décidable si : il existe un algorithme qui prend un entier naturel en entrée, et qui s'arrête exactement sur les entiers de ; ou, de manière équivalente : il existe un procédé algorithmique qui, au cours de son fonctionnement, énumère en sortie tous les entiers de et seulement ceux-ci (il est possible, et même nécessaire quand est infini, qu'il ne s'arrête pas).
Calcul ombralEn mathématiques, le calcul ombral est le nom d'un ensemble de techniques de calcul formel qui, avant les années 1970, était plutôt appelé calcul symbolique. Il s'agit de l'étude des similarités surprenantes entre certaines formules polynomiales a priori non reliées entre elles, et d'un ensemble de règles de manipulation (au demeurant assez peu claires) pouvant être utilisées pour les obtenir (mais non les démontrer).
Matrices semblablesEn mathématiques, deux matrices carrées A et B sont dites semblables s'il existe une matrice inversible P telle que . La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes. Il ne faut pas confondre la notion de matrices semblables avec celle de matrices équivalentes. En revanche, si deux matrices sont semblables, alors elles sont équivalentes.
Mu-calculEn logique mathématique et en informatique théorique, le mu-calcul (ou logique du mu-calcul modal) est l'extension de la logique modale classique avec des opérateurs de points fixes. Selon Bradfield et Walukiewicz, le mu-calcul est une des logiques les plus importantes pour la vérification de modèles ; elle est expressive tout en ayant de bonnes propriétés algorithmiques. Le mu-calcul (propositionnel et modal) a d'abord été introduit par Dana Scott et Jaco de Bakker puis a été étendu dans sa version moderne par Dexter Kozen.