Publication

Computing vertex connectivity: New bounds from old techniques

Monika Henzinger
1996
Conference paper
Abstract

The vertex connectivity K of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. We present the fastest known deterministic algorithm for finding the vertex connectivity and a corresponding separator. The time for a digraph having n vertices and m edges is O(min(pow3(K)+n,K.n)m); for an undirected graph the term m can be replaced by K.n. A randomized algorithm finds K with error probability 1/2 in time O(n.m). If the vertices have nonnegative weights the weighted vertex connectivity is found in time O(K'.n.m.log(pow2(n)/m)) where K'

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.