ToolA tool is an object that can extend an individual's ability to modify features of the surrounding environment or help them accomplish a particular task. Although many animals use simple tools, only human beings, whose use of stone tools dates back hundreds of millennia, have been observed using tools to make other tools. Early human tools, made of such materials as stone, bone, and wood, were used for the preparation of food, hunting, the manufacture of weapons, and the working of materials to produce clothing and useful artifacts and crafts such as pottery, along with the construction of housing, businesses, infrastructure, and transportation.
Évariste GaloisÉvariste Galois (gælˈwɑː; evaʁist ɡalwa; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a problem that had been open for 350 years. His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra. He was a staunch republican and was heavily involved in the political turmoil that surrounded the French Revolution of 1830.
Pseudorandom function familyIn cryptography, a pseudorandom function family, abbreviated PRF, is a collection of efficiently-computable functions which emulate a random oracle in the following way: no efficient algorithm can distinguish (with significant advantage) between a function chosen randomly from the PRF family and a random oracle (a function whose outputs are fixed completely at random). Pseudorandom functions are vital tools in the construction of cryptographic primitives, especially secure encryption schemes.
Differential Galois theoryIn mathematics, differential Galois theory studies the Galois groups of differential equations. Whereas algebraic Galois theory studies extensions of algebraic fields, differential Galois theory studies extensions of differential fields, i.e. fields that are equipped with a derivation, D. Much of the theory of differential Galois theory is parallel to algebraic Galois theory. One difference between the two constructions is that the Galois groups in differential Galois theory tend to be matrix Lie groups, as compared with the finite groups often encountered in algebraic Galois theory.
Order (ring theory)In mathematics, an order in the sense of ring theory is a subring of a ring , such that is a finite-dimensional algebra over the field of rational numbers spans over , and is a -lattice in . The last two conditions can be stated in less formal terms: Additively, is a free abelian group generated by a basis for over . More generally for an integral domain contained in a field , we define to be an -order in a -algebra if it is a subring of which is a full -lattice.
Serpent (cipher)Serpent is a symmetric key block cipher that was a finalist in the Advanced Encryption Standard (AES) contest, where it was ranked second to Rijndael. Serpent was designed by Ross Anderson, Eli Biham, and Lars Knudsen. Like other AES submissions, Serpent has a block size of 128 bits and supports a key size of 128, 192 or 256 bits. The cipher is a 32-round substitution–permutation network operating on a block of four 32-bit words. Each round applies one of eight 4-bit to 4-bit S-boxes 32 times in parallel.
Cyclic permutationIn mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted.
Parity of a permutationIn mathematics, when X is a finite set with at least two elements, the permutations of X (i.e. the bijective functions from X to X) fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of X is fixed, the parity (oddness or evenness) of a permutation of X can be defined as the parity of the number of inversions for σ, i.e., of pairs of elements x, y of X such that x < y and σ(x) > σ(y). The sign, signature, or signum of a permutation σ is denoted sgn(σ) and defined as +1 if σ is even and −1 if σ is odd.
Galois connectionIn mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields, discovered by the French mathematician Évariste Galois. A Galois connection can also be defined on preordered sets or classes; this article presents the common case of posets.
Absolute Galois groupIn mathematics, the absolute Galois group GK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When K is a perfect field, Ksep is the same as an algebraic closure Kalg of K. This holds e.g. for K of characteristic zero, or K a finite field.) The absolute Galois group of an algebraically closed field is trivial.