Security controlsSecurity controls are safeguards or countermeasures to avoid, detect, counteract, or minimize security risks to physical property, information, computer systems, or other assets. In the field of information security, such controls protect the confidentiality, integrity and availability of information. Systems of controls can be referred to as frameworks or standards. Frameworks can enable an organization to manage security controls across different types of assets with consistency.
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Worst-case complexityIn computer science (specifically computational complexity theory), the worst-case complexity measures the resources (e.g. running time, memory) that an algorithm requires given an input of arbitrary size (commonly denoted as n in asymptotic notation). It gives an upper bound on the resources required by the algorithm. In the case of running time, the worst-case time complexity indicates the longest running time performed by an algorithm given any input of size n, and thus guarantees that the algorithm will finish in the indicated period of time.
Theory of computationIn theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Mathematical proofA mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation".
AlgorithmIn mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.
Computer securityComputer security, cyber security, digital security or information technology security (IT security) is the protection of computer systems and networks from attacks by malicious actors that may result in unauthorized information disclosure, theft of, or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide. The field is significant due to the expanded reliance on computer systems, the Internet, and wireless network standards such as Bluetooth and Wi-Fi.