Concept

Quantum complexity theory

Summary
Quantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA. Computational complexity and Complexity class A complexity class is a collection of computational problems that can be solved by a computational model under certain resource constraints. For instance, the complexity class P is defined as the set of problems solvable by a Turing machine in polynomial time. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the quantum circuit model or the equivalent quantum Turing machine. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as P, NP, BPP, and PSPACE. One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern Church-Turing thesis. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a probabilistic Turing machine. However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time. Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with asymptotic notation. Some common forms of asymptotic notion of functions are , , and .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.